Economic growth is vital for improving our lives and the primary long-run determinant of economic growth is innovation. More innovation means better products, more choices for consumers and a higher standard of living. Worldwide, hundreds of millions of people have been lifted out of poverty due to the economic growth that has occurred in many countries since the 1970s.
The effect of innovation on economic growth has been heavily analyzed using data from the post-WWII period, but there is considerably less work that examines the relationship between innovation and economic growth during earlier time periods. An interesting new working paper by Ufuk Akcigit, John Grigsby and Tom Nicholas that examines innovation across America during the late 19th and early 20th century helps fill in this gap.
The authors examine innovation and inventors in the U.S. during this period using U.S. patent data and census data from 1880 to 1940. The figure below shows the geographic distribution of inventiveness in 1940. Darker colors mean higher rates of inventive activity.
Most of the inventive activity in 1940 was in the industrial Midwest and Northeast, with California being the most notable western exception.
The next figure depicts the relationship between the log of the total number of patents granted to inventors in each state from 1900 to 2000 (x-axis) and annualized GDP growth (y-axis) over the same period for the 48 contiguous states.
As shown there is a strong positive relationship between this measure of innovation and economic growth. The authors also conduct multi-variable regression analyses, including an instrumental variable analysis, and find the same positive relationship.
The better understand why certain states had more inventive activity than others in the early 20th century, the authors analyze several factors: 1) urbanization, 2) access to capital, 3) geographic connectedness and 4) openness to new ideas.
The figures below show the more urbanization was associated with more innovation from 1940 to 1960. The left figure plots the percent of people in each state living in an urban area in 1940 on the x-axis while the right has the percent living on a farm on the x-axis. Both figures tell the same story—rural states were less innovative.
Next, the authors look at the financial health of each state using deposits per capita as their measure. A stable, well-funded banking system makes it easier for inventors to get the capital they need to innovate. The figure below shows the positive relationship between deposits per capita in 1920 and patent production from 1920 to 1930.
The size of the market should also matter to inventors, since greater access to consumers means more sales and profits from successful inventions. The figures below show the relationship between a state’s transport cost advantage (x-axis) and innovation. The left figure depicts all of the states while the right omits the less populated, more geographically isolated Western states.
States with a greater transport cost advantage in 1920—i.e. less economically isolated—were more innovative from 1920 to 1940, and this relationship is stronger when states in the far West are removed.
The last relationship the authors examine is that between innovation and openness to new, potentially disruptive ideas. One of their proxies for openness is the percent of families who owned slaves in a state, with more slave ownership being a sign of less openness to change and innovation.
The figures show that more slave ownership in 1860 was associated with less innovation at the state-level from 1880 to 1940. This negative relationship holds when all states are included (left figure) and when states with no slave ownership in 1860—which includes many Northern states—are omitted (right figure).
The authors also analyze individual-level data and find that inventors of the early 20th century were more likely to migrate across state lines than the rest of the population. Additionally, they find that conditional on moving, inventors tended to migrate to states that were more urbanized, had higher bank deposits per capita and had lower rates of historical slave ownership.
Next, the relationship between innovation and inequality is examined. Inequality has been a hot topic the last several years, with many people citing research by economists Thomas Piketty and Emmanuel Saez that argues that inequality has increased in the U.S. since the 1970s. The methods and data used to construct some of the most notable evidence of increasing inequality has been criticized, but this has not made the topic any less popular.
In theory, innovation has an ambiguous effect on inequality. If there is a lot of regulation and high barriers to entry, the profits from innovation may primarily accrue to large established companies, which would tend to increase inequality.
On the other hand, new firms that create innovative new products can erode the market share and profits of larger, richer firms, and this would tend to decrease inequality. This idea of innovation aligns with economist Joseph Schumpeter’s “creative destruction”.
So what was going on in the early 20th century? The figure below shows the relationship between innovation and two measures of state-level inequality: the ratio of the 90th percentile wage over the 10th percentile wage in 1940 and the wage income Gini coefficient in 1940. For each measure, a smaller value means less inequality.
As shown in the figures above, a higher patent rate is correlated with less inequality. However, only the result using 90-10 ratio remains statistically significant when each state’s occupation mix is controlled for in a multi-variable regression.
The authors also find that when the share of income controlled by the top 1% of earners is used as the measure of inequality, the relationship between innovation and inequality makes a U shape. That is, innovation decreases inequality up to a point, but after that point it’s associated with more inequality.
Thus when using the broader measures of inequality (90-10 ratio, Gini coeffecieint) innovation is negatively correlated with inequality, but when using a measure of top-end inequality (income controlled by top 1%) the relationship is less clear. This shows that inequality results are sensitive to the measurement of inequality used.
Social mobility is an important measure of economic opportunity within a society and the figure below shows that innovation is positively correlated with greater social mobility.
The measure of social mobility used is the percentage of people who have a high-skill occupation in 1940 given that they had a low-skill father (y-axis). States with more innovation from 1920 to 1940 had more social mobility according to this measure.
In the early 20th century it appears that innovation improved social mobility and decreased inequality, though the latter result is sensitive to the measurement of inequality. However, the two concepts are not equally important: Economic and social mobility are worthy societal ideals that require opportunity to be available to all, while static income or wealth inequality is largely a red herring that distracts us from more important issues. And once you take into account the consumer-benefits of innovation during this period—electricity, the automobile, refrigeration etc.—it is clear that innovation does far more good than harm.
This paper is interesting and useful for several reasons. First, it shows that innovation is important for economic growth over a long time period for one country. It also shows that more innovation occurred in denser, urbanized states that provided better access to capital, were more interconnected and were more open to new, disruptive ideas. These results are consistent with what economists have found using more recent data, but this research provides evidence that these relationships have existed over a much longer time period.
The positive relationships between innovation and income equality/social mobility in the early 20th century should also help alleviate the fears some people have about the negative effects of creative destruction. Innovation inevitably creates adjustment costs that harm some people, but during this period it doesn’t appear that it caused widespread harm to workers.
If we reduce regulation today in order to encourage more innovation and competition we will likely experience similar results, along with more economic growth and all of the consumer benefits.